Copied to
clipboard

G = C23.21D26order 416 = 25·13

2nd non-split extension by C23 of D26 acting via D26/C26=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.21D26, (C2×C52)⋊11C4, C52.58(C2×C4), C523C417C2, (C2×C4)⋊4Dic13, (C2×C4).102D26, (C22×C4).7D13, C135(C42⋊C2), (C4×Dic13)⋊15C2, C26.16(C4○D4), C26.37(C22×C4), (C22×C52).10C2, (C2×C26).44C23, (C2×C52).93C22, C4.15(C2×Dic13), C23.D13.5C2, C2.4(D525C2), C2.5(C22×Dic13), C22.5(C2×Dic13), (C22×C26).36C22, C22.22(C22×D13), (C2×Dic13).38C22, (C2×C26).55(C2×C4), SmallGroup(416,147)

Series: Derived Chief Lower central Upper central

C1C26 — C23.21D26
C1C13C26C2×C26C2×Dic13C4×Dic13 — C23.21D26
C13C26 — C23.21D26
C1C2×C4C22×C4

Generators and relations for C23.21D26
 G = < a,b,c,d,e | a2=b2=c2=1, d26=c, e2=cb=bc, ab=ba, eae-1=ac=ca, ad=da, bd=db, be=eb, cd=dc, ce=ec, ede-1=d25 >

Subgroups: 320 in 76 conjugacy classes, 49 normal (15 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, C23, C13, C42, C22⋊C4, C4⋊C4, C22×C4, C26, C26, C26, C42⋊C2, Dic13, C52, C2×C26, C2×C26, C2×C26, C2×Dic13, C2×C52, C2×C52, C22×C26, C4×Dic13, C523C4, C23.D13, C22×C52, C23.21D26
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C4○D4, D13, C42⋊C2, Dic13, D26, C2×Dic13, C22×D13, D525C2, C22×Dic13, C23.21D26

Smallest permutation representation of C23.21D26
On 208 points
Generators in S208
(1 199)(2 200)(3 201)(4 202)(5 203)(6 204)(7 205)(8 206)(9 207)(10 208)(11 157)(12 158)(13 159)(14 160)(15 161)(16 162)(17 163)(18 164)(19 165)(20 166)(21 167)(22 168)(23 169)(24 170)(25 171)(26 172)(27 173)(28 174)(29 175)(30 176)(31 177)(32 178)(33 179)(34 180)(35 181)(36 182)(37 183)(38 184)(39 185)(40 186)(41 187)(42 188)(43 189)(44 190)(45 191)(46 192)(47 193)(48 194)(49 195)(50 196)(51 197)(52 198)(53 124)(54 125)(55 126)(56 127)(57 128)(58 129)(59 130)(60 131)(61 132)(62 133)(63 134)(64 135)(65 136)(66 137)(67 138)(68 139)(69 140)(70 141)(71 142)(72 143)(73 144)(74 145)(75 146)(76 147)(77 148)(78 149)(79 150)(80 151)(81 152)(82 153)(83 154)(84 155)(85 156)(86 105)(87 106)(88 107)(89 108)(90 109)(91 110)(92 111)(93 112)(94 113)(95 114)(96 115)(97 116)(98 117)(99 118)(100 119)(101 120)(102 121)(103 122)(104 123)
(1 199)(2 200)(3 201)(4 202)(5 203)(6 204)(7 205)(8 206)(9 207)(10 208)(11 157)(12 158)(13 159)(14 160)(15 161)(16 162)(17 163)(18 164)(19 165)(20 166)(21 167)(22 168)(23 169)(24 170)(25 171)(26 172)(27 173)(28 174)(29 175)(30 176)(31 177)(32 178)(33 179)(34 180)(35 181)(36 182)(37 183)(38 184)(39 185)(40 186)(41 187)(42 188)(43 189)(44 190)(45 191)(46 192)(47 193)(48 194)(49 195)(50 196)(51 197)(52 198)(53 150)(54 151)(55 152)(56 153)(57 154)(58 155)(59 156)(60 105)(61 106)(62 107)(63 108)(64 109)(65 110)(66 111)(67 112)(68 113)(69 114)(70 115)(71 116)(72 117)(73 118)(74 119)(75 120)(76 121)(77 122)(78 123)(79 124)(80 125)(81 126)(82 127)(83 128)(84 129)(85 130)(86 131)(87 132)(88 133)(89 134)(90 135)(91 136)(92 137)(93 138)(94 139)(95 140)(96 141)(97 142)(98 143)(99 144)(100 145)(101 146)(102 147)(103 148)(104 149)
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 33)(8 34)(9 35)(10 36)(11 37)(12 38)(13 39)(14 40)(15 41)(16 42)(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 49)(24 50)(25 51)(26 52)(53 79)(54 80)(55 81)(56 82)(57 83)(58 84)(59 85)(60 86)(61 87)(62 88)(63 89)(64 90)(65 91)(66 92)(67 93)(68 94)(69 95)(70 96)(71 97)(72 98)(73 99)(74 100)(75 101)(76 102)(77 103)(78 104)(105 131)(106 132)(107 133)(108 134)(109 135)(110 136)(111 137)(112 138)(113 139)(114 140)(115 141)(116 142)(117 143)(118 144)(119 145)(120 146)(121 147)(122 148)(123 149)(124 150)(125 151)(126 152)(127 153)(128 154)(129 155)(130 156)(157 183)(158 184)(159 185)(160 186)(161 187)(162 188)(163 189)(164 190)(165 191)(166 192)(167 193)(168 194)(169 195)(170 196)(171 197)(172 198)(173 199)(174 200)(175 201)(176 202)(177 203)(178 204)(179 205)(180 206)(181 207)(182 208)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208)
(1 54 173 125)(2 79 174 150)(3 104 175 123)(4 77 176 148)(5 102 177 121)(6 75 178 146)(7 100 179 119)(8 73 180 144)(9 98 181 117)(10 71 182 142)(11 96 183 115)(12 69 184 140)(13 94 185 113)(14 67 186 138)(15 92 187 111)(16 65 188 136)(17 90 189 109)(18 63 190 134)(19 88 191 107)(20 61 192 132)(21 86 193 105)(22 59 194 130)(23 84 195 155)(24 57 196 128)(25 82 197 153)(26 55 198 126)(27 80 199 151)(28 53 200 124)(29 78 201 149)(30 103 202 122)(31 76 203 147)(32 101 204 120)(33 74 205 145)(34 99 206 118)(35 72 207 143)(36 97 208 116)(37 70 157 141)(38 95 158 114)(39 68 159 139)(40 93 160 112)(41 66 161 137)(42 91 162 110)(43 64 163 135)(44 89 164 108)(45 62 165 133)(46 87 166 106)(47 60 167 131)(48 85 168 156)(49 58 169 129)(50 83 170 154)(51 56 171 127)(52 81 172 152)

G:=sub<Sym(208)| (1,199)(2,200)(3,201)(4,202)(5,203)(6,204)(7,205)(8,206)(9,207)(10,208)(11,157)(12,158)(13,159)(14,160)(15,161)(16,162)(17,163)(18,164)(19,165)(20,166)(21,167)(22,168)(23,169)(24,170)(25,171)(26,172)(27,173)(28,174)(29,175)(30,176)(31,177)(32,178)(33,179)(34,180)(35,181)(36,182)(37,183)(38,184)(39,185)(40,186)(41,187)(42,188)(43,189)(44,190)(45,191)(46,192)(47,193)(48,194)(49,195)(50,196)(51,197)(52,198)(53,124)(54,125)(55,126)(56,127)(57,128)(58,129)(59,130)(60,131)(61,132)(62,133)(63,134)(64,135)(65,136)(66,137)(67,138)(68,139)(69,140)(70,141)(71,142)(72,143)(73,144)(74,145)(75,146)(76,147)(77,148)(78,149)(79,150)(80,151)(81,152)(82,153)(83,154)(84,155)(85,156)(86,105)(87,106)(88,107)(89,108)(90,109)(91,110)(92,111)(93,112)(94,113)(95,114)(96,115)(97,116)(98,117)(99,118)(100,119)(101,120)(102,121)(103,122)(104,123), (1,199)(2,200)(3,201)(4,202)(5,203)(6,204)(7,205)(8,206)(9,207)(10,208)(11,157)(12,158)(13,159)(14,160)(15,161)(16,162)(17,163)(18,164)(19,165)(20,166)(21,167)(22,168)(23,169)(24,170)(25,171)(26,172)(27,173)(28,174)(29,175)(30,176)(31,177)(32,178)(33,179)(34,180)(35,181)(36,182)(37,183)(38,184)(39,185)(40,186)(41,187)(42,188)(43,189)(44,190)(45,191)(46,192)(47,193)(48,194)(49,195)(50,196)(51,197)(52,198)(53,150)(54,151)(55,152)(56,153)(57,154)(58,155)(59,156)(60,105)(61,106)(62,107)(63,108)(64,109)(65,110)(66,111)(67,112)(68,113)(69,114)(70,115)(71,116)(72,117)(73,118)(74,119)(75,120)(76,121)(77,122)(78,123)(79,124)(80,125)(81,126)(82,127)(83,128)(84,129)(85,130)(86,131)(87,132)(88,133)(89,134)(90,135)(91,136)(92,137)(93,138)(94,139)(95,140)(96,141)(97,142)(98,143)(99,144)(100,145)(101,146)(102,147)(103,148)(104,149), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52)(53,79)(54,80)(55,81)(56,82)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100)(75,101)(76,102)(77,103)(78,104)(105,131)(106,132)(107,133)(108,134)(109,135)(110,136)(111,137)(112,138)(113,139)(114,140)(115,141)(116,142)(117,143)(118,144)(119,145)(120,146)(121,147)(122,148)(123,149)(124,150)(125,151)(126,152)(127,153)(128,154)(129,155)(130,156)(157,183)(158,184)(159,185)(160,186)(161,187)(162,188)(163,189)(164,190)(165,191)(166,192)(167,193)(168,194)(169,195)(170,196)(171,197)(172,198)(173,199)(174,200)(175,201)(176,202)(177,203)(178,204)(179,205)(180,206)(181,207)(182,208), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208), (1,54,173,125)(2,79,174,150)(3,104,175,123)(4,77,176,148)(5,102,177,121)(6,75,178,146)(7,100,179,119)(8,73,180,144)(9,98,181,117)(10,71,182,142)(11,96,183,115)(12,69,184,140)(13,94,185,113)(14,67,186,138)(15,92,187,111)(16,65,188,136)(17,90,189,109)(18,63,190,134)(19,88,191,107)(20,61,192,132)(21,86,193,105)(22,59,194,130)(23,84,195,155)(24,57,196,128)(25,82,197,153)(26,55,198,126)(27,80,199,151)(28,53,200,124)(29,78,201,149)(30,103,202,122)(31,76,203,147)(32,101,204,120)(33,74,205,145)(34,99,206,118)(35,72,207,143)(36,97,208,116)(37,70,157,141)(38,95,158,114)(39,68,159,139)(40,93,160,112)(41,66,161,137)(42,91,162,110)(43,64,163,135)(44,89,164,108)(45,62,165,133)(46,87,166,106)(47,60,167,131)(48,85,168,156)(49,58,169,129)(50,83,170,154)(51,56,171,127)(52,81,172,152)>;

G:=Group( (1,199)(2,200)(3,201)(4,202)(5,203)(6,204)(7,205)(8,206)(9,207)(10,208)(11,157)(12,158)(13,159)(14,160)(15,161)(16,162)(17,163)(18,164)(19,165)(20,166)(21,167)(22,168)(23,169)(24,170)(25,171)(26,172)(27,173)(28,174)(29,175)(30,176)(31,177)(32,178)(33,179)(34,180)(35,181)(36,182)(37,183)(38,184)(39,185)(40,186)(41,187)(42,188)(43,189)(44,190)(45,191)(46,192)(47,193)(48,194)(49,195)(50,196)(51,197)(52,198)(53,124)(54,125)(55,126)(56,127)(57,128)(58,129)(59,130)(60,131)(61,132)(62,133)(63,134)(64,135)(65,136)(66,137)(67,138)(68,139)(69,140)(70,141)(71,142)(72,143)(73,144)(74,145)(75,146)(76,147)(77,148)(78,149)(79,150)(80,151)(81,152)(82,153)(83,154)(84,155)(85,156)(86,105)(87,106)(88,107)(89,108)(90,109)(91,110)(92,111)(93,112)(94,113)(95,114)(96,115)(97,116)(98,117)(99,118)(100,119)(101,120)(102,121)(103,122)(104,123), (1,199)(2,200)(3,201)(4,202)(5,203)(6,204)(7,205)(8,206)(9,207)(10,208)(11,157)(12,158)(13,159)(14,160)(15,161)(16,162)(17,163)(18,164)(19,165)(20,166)(21,167)(22,168)(23,169)(24,170)(25,171)(26,172)(27,173)(28,174)(29,175)(30,176)(31,177)(32,178)(33,179)(34,180)(35,181)(36,182)(37,183)(38,184)(39,185)(40,186)(41,187)(42,188)(43,189)(44,190)(45,191)(46,192)(47,193)(48,194)(49,195)(50,196)(51,197)(52,198)(53,150)(54,151)(55,152)(56,153)(57,154)(58,155)(59,156)(60,105)(61,106)(62,107)(63,108)(64,109)(65,110)(66,111)(67,112)(68,113)(69,114)(70,115)(71,116)(72,117)(73,118)(74,119)(75,120)(76,121)(77,122)(78,123)(79,124)(80,125)(81,126)(82,127)(83,128)(84,129)(85,130)(86,131)(87,132)(88,133)(89,134)(90,135)(91,136)(92,137)(93,138)(94,139)(95,140)(96,141)(97,142)(98,143)(99,144)(100,145)(101,146)(102,147)(103,148)(104,149), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52)(53,79)(54,80)(55,81)(56,82)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,97)(72,98)(73,99)(74,100)(75,101)(76,102)(77,103)(78,104)(105,131)(106,132)(107,133)(108,134)(109,135)(110,136)(111,137)(112,138)(113,139)(114,140)(115,141)(116,142)(117,143)(118,144)(119,145)(120,146)(121,147)(122,148)(123,149)(124,150)(125,151)(126,152)(127,153)(128,154)(129,155)(130,156)(157,183)(158,184)(159,185)(160,186)(161,187)(162,188)(163,189)(164,190)(165,191)(166,192)(167,193)(168,194)(169,195)(170,196)(171,197)(172,198)(173,199)(174,200)(175,201)(176,202)(177,203)(178,204)(179,205)(180,206)(181,207)(182,208), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208), (1,54,173,125)(2,79,174,150)(3,104,175,123)(4,77,176,148)(5,102,177,121)(6,75,178,146)(7,100,179,119)(8,73,180,144)(9,98,181,117)(10,71,182,142)(11,96,183,115)(12,69,184,140)(13,94,185,113)(14,67,186,138)(15,92,187,111)(16,65,188,136)(17,90,189,109)(18,63,190,134)(19,88,191,107)(20,61,192,132)(21,86,193,105)(22,59,194,130)(23,84,195,155)(24,57,196,128)(25,82,197,153)(26,55,198,126)(27,80,199,151)(28,53,200,124)(29,78,201,149)(30,103,202,122)(31,76,203,147)(32,101,204,120)(33,74,205,145)(34,99,206,118)(35,72,207,143)(36,97,208,116)(37,70,157,141)(38,95,158,114)(39,68,159,139)(40,93,160,112)(41,66,161,137)(42,91,162,110)(43,64,163,135)(44,89,164,108)(45,62,165,133)(46,87,166,106)(47,60,167,131)(48,85,168,156)(49,58,169,129)(50,83,170,154)(51,56,171,127)(52,81,172,152) );

G=PermutationGroup([[(1,199),(2,200),(3,201),(4,202),(5,203),(6,204),(7,205),(8,206),(9,207),(10,208),(11,157),(12,158),(13,159),(14,160),(15,161),(16,162),(17,163),(18,164),(19,165),(20,166),(21,167),(22,168),(23,169),(24,170),(25,171),(26,172),(27,173),(28,174),(29,175),(30,176),(31,177),(32,178),(33,179),(34,180),(35,181),(36,182),(37,183),(38,184),(39,185),(40,186),(41,187),(42,188),(43,189),(44,190),(45,191),(46,192),(47,193),(48,194),(49,195),(50,196),(51,197),(52,198),(53,124),(54,125),(55,126),(56,127),(57,128),(58,129),(59,130),(60,131),(61,132),(62,133),(63,134),(64,135),(65,136),(66,137),(67,138),(68,139),(69,140),(70,141),(71,142),(72,143),(73,144),(74,145),(75,146),(76,147),(77,148),(78,149),(79,150),(80,151),(81,152),(82,153),(83,154),(84,155),(85,156),(86,105),(87,106),(88,107),(89,108),(90,109),(91,110),(92,111),(93,112),(94,113),(95,114),(96,115),(97,116),(98,117),(99,118),(100,119),(101,120),(102,121),(103,122),(104,123)], [(1,199),(2,200),(3,201),(4,202),(5,203),(6,204),(7,205),(8,206),(9,207),(10,208),(11,157),(12,158),(13,159),(14,160),(15,161),(16,162),(17,163),(18,164),(19,165),(20,166),(21,167),(22,168),(23,169),(24,170),(25,171),(26,172),(27,173),(28,174),(29,175),(30,176),(31,177),(32,178),(33,179),(34,180),(35,181),(36,182),(37,183),(38,184),(39,185),(40,186),(41,187),(42,188),(43,189),(44,190),(45,191),(46,192),(47,193),(48,194),(49,195),(50,196),(51,197),(52,198),(53,150),(54,151),(55,152),(56,153),(57,154),(58,155),(59,156),(60,105),(61,106),(62,107),(63,108),(64,109),(65,110),(66,111),(67,112),(68,113),(69,114),(70,115),(71,116),(72,117),(73,118),(74,119),(75,120),(76,121),(77,122),(78,123),(79,124),(80,125),(81,126),(82,127),(83,128),(84,129),(85,130),(86,131),(87,132),(88,133),(89,134),(90,135),(91,136),(92,137),(93,138),(94,139),(95,140),(96,141),(97,142),(98,143),(99,144),(100,145),(101,146),(102,147),(103,148),(104,149)], [(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,33),(8,34),(9,35),(10,36),(11,37),(12,38),(13,39),(14,40),(15,41),(16,42),(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,49),(24,50),(25,51),(26,52),(53,79),(54,80),(55,81),(56,82),(57,83),(58,84),(59,85),(60,86),(61,87),(62,88),(63,89),(64,90),(65,91),(66,92),(67,93),(68,94),(69,95),(70,96),(71,97),(72,98),(73,99),(74,100),(75,101),(76,102),(77,103),(78,104),(105,131),(106,132),(107,133),(108,134),(109,135),(110,136),(111,137),(112,138),(113,139),(114,140),(115,141),(116,142),(117,143),(118,144),(119,145),(120,146),(121,147),(122,148),(123,149),(124,150),(125,151),(126,152),(127,153),(128,154),(129,155),(130,156),(157,183),(158,184),(159,185),(160,186),(161,187),(162,188),(163,189),(164,190),(165,191),(166,192),(167,193),(168,194),(169,195),(170,196),(171,197),(172,198),(173,199),(174,200),(175,201),(176,202),(177,203),(178,204),(179,205),(180,206),(181,207),(182,208)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208)], [(1,54,173,125),(2,79,174,150),(3,104,175,123),(4,77,176,148),(5,102,177,121),(6,75,178,146),(7,100,179,119),(8,73,180,144),(9,98,181,117),(10,71,182,142),(11,96,183,115),(12,69,184,140),(13,94,185,113),(14,67,186,138),(15,92,187,111),(16,65,188,136),(17,90,189,109),(18,63,190,134),(19,88,191,107),(20,61,192,132),(21,86,193,105),(22,59,194,130),(23,84,195,155),(24,57,196,128),(25,82,197,153),(26,55,198,126),(27,80,199,151),(28,53,200,124),(29,78,201,149),(30,103,202,122),(31,76,203,147),(32,101,204,120),(33,74,205,145),(34,99,206,118),(35,72,207,143),(36,97,208,116),(37,70,157,141),(38,95,158,114),(39,68,159,139),(40,93,160,112),(41,66,161,137),(42,91,162,110),(43,64,163,135),(44,89,164,108),(45,62,165,133),(46,87,166,106),(47,60,167,131),(48,85,168,156),(49,58,169,129),(50,83,170,154),(51,56,171,127),(52,81,172,152)]])

116 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G···4N13A···13F26A···26AP52A···52AV
order1222224444444···413···1326···2652···52
size11112211112226···262···22···22···2

116 irreducible representations

dim111111222222
type++++++-++
imageC1C2C2C2C2C4C4○D4D13Dic13D26D26D525C2
kernelC23.21D26C4×Dic13C523C4C23.D13C22×C52C2×C52C26C22×C4C2×C4C2×C4C23C2
# reps122218462412648

Matrix representation of C23.21D26 in GL3(𝔽53) generated by

100
017
0052
,
5200
010
001
,
100
0520
0052
,
5200
03917
0019
,
2300
0338
03620
G:=sub<GL(3,GF(53))| [1,0,0,0,1,0,0,7,52],[52,0,0,0,1,0,0,0,1],[1,0,0,0,52,0,0,0,52],[52,0,0,0,39,0,0,17,19],[23,0,0,0,33,36,0,8,20] >;

C23.21D26 in GAP, Magma, Sage, TeX

C_2^3._{21}D_{26}
% in TeX

G:=Group("C2^3.21D26");
// GroupNames label

G:=SmallGroup(416,147);
// by ID

G=gap.SmallGroup(416,147);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-13,48,103,362,13829]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^26=c,e^2=c*b=b*c,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^25>;
// generators/relations

׿
×
𝔽